Sunday, March 15, 2009

Lipid bilayer

The cell membrane consists primarily of a thin layer of amphipathic phospholipids which spontaneously arrange so that the hydrophobic "tail" regions are shielded from the surrounding polar fluid, causing the more hydrophilic "head" regions to associate with the cytosolic and extracellular faces of the resulting bilayer. This forms a continuous, spherical lipid bilayer.

The arrangement of hydrophilic heads and hydrophobic tails of the lipid bilayer prevent polar solutes (e.g. amino acids, nucleic acids, carbohydrates, proteins, and ions) from diffusing across the membrane, but generally allows for the passive diffusion of hydrophobic molecules. This affords the cell the ability to control the movement of these substances via transmembrane protein complexes such as pores and gates.

Flippases and Scramblases concentrate phosphatidyl serine, which carries a negative charge, on the inner membrane. Along with NANA, this creates an extra barrier to charged moieties moving through the membrane.

Membranes serve diverse functions in eukaryotic and prokaryotic cells. One important role is to regulate the movement of materials into and out of cells. The phospholipid bilayer structure (fluid mosaic model) with specific membrane proteins accounts for the selective permeability of the membrane and passive and active transport mechanisms. In addition, membranes in prokaryotes and in the mitochondria and chloroplasts of eukaryotes facilitate the synthesis of ATP through chemiosmosis.

Cell membrane

The cell membrane (also called the plasma membrane, plasmalemma, or phospholipid bilayer) is the interface between the cellular machinery inside the cell and the fluid outside.

It is a semipermeable lipid bilayer found in all cells. It contains a wide variety of biological molecules, primarily proteins and lipids, which are involved in a vast array of cellular processes such as cell adhesion, ion channel conductance and cell signaling. The plasma membrane also serves as the attachment point for both the intracellular cytoskeleton and, if present, the extracellular cell wall.

Abiogenesis

"Primordial soup" redirects here. For the board game, see Primordial Soup (board game).
Pre-Cambrian stromatolites in the Siyeh Formation, Glacier National Park. In 2002, William Schopf of UCLA published a paper in the scientific journal Nature arguing that geological formations such as this possess 3.5 Ga (billion years old) fossilized cyanobacteria microbes. If true, they would be the earliest known life on earth.

In the natural sciences, abiogenesis, or origin of life, is the study of how life on Earth could have arisen from inanimate matter. It should not be confused with evolution, which is the study of how living things change over time. Amino acids, often called "the building blocks of life", occur naturally, due to chemical reactions unrelated to life. In all living things, these amino acids are organized into proteins, and the construction of these proteins is mediated by nucleic acids. Thus the question of how life on Earth originated is a question of how the first nucleic acids arose.

Some facts about the origin of life are well understood, others are still the subject of current research. The first living things on Earth are thought to be single cell prokaryotes. The oldest ancient fossil microbe-like objects are dated to be 3.5 Ga (billion years old), just a few hundred million years younger than Earth itself.By 2.4 Ga, the ratio of stable isotopes of carbon, iron and sulfur shows the action of living things on inorganic minerals and sediments and molecular biomarkers indicate photosynthesis, demonstrating that life on Earth was widespread by this time.

On the other hand, the exact sequence of chemical events that led to the first nucleic acids is not known. Several hypotheses about early life have been proposed, most notably the iron-sulfur world theory (metabolism without genetics) and the RNA world hypothesis (RNA life-forms).